Enhancing Global App Deployment with Azure Traffic Manager

Embarking on the path to enhanced global application deployment demands a nuanced understanding of how to effectively distribute network traffic to maintain optimal performance and availability. Today, I will dive deep into implementing Azure’s Traffic Manager, an innovative global DNS load balancer developed by Microsoft Azure. This tool is instrumental in distributing network traffic across several endpoints, such as Azure web apps and VMs (Virtual Machines), ensuring that applications retain high availability and responsiveness, particularly when deployed across multiple regions or data centers.

Prerequisites

  • Azure Subscription
  • At least two Azure Web Apps or VMs (Refer to Azure’s official guide for creating Azure web apps.)

Use Cases

  • Global Application Deployment
  • High availability and responsiveness
  • Customized Traffic Routing

Benefits

  • Enhanced scalability and flexibility
  • Improved application availability
  • Cost-effective solution

Azure Traffic Manager Implementation Steps

Step 1: Creation of Azure Web Apps

Begin by establishing Azure Web Apps in two distinct regions. For the purpose of this demonstration, these configurations are pre-established. It’s crucial to ensure that your web application SKU is compatible with Azure Traffic Manager, selecting the Standard S1 with 100 total ACU and 1.75 GB memory for this instance.

Step 2 & 4: Application Browsing

To demonstrate this, simply browse your application, ensuring that one application is operational in regions like East US and another in West Europe.

Azure Traffic Manager Implementation

To set up the Traffic Manager, navigate to the Azure marketplace and search for the Traffic Manager Profile. Choose a distinct name for the Traffic Manager; in this scenario, ‘trafficmanager2451’ is used. Opt for the Priority routing method to obtain augmented control over the distribution of traffic. Notably, the Traffic Manager profile’s region does not necessitate specification here, as it is a global service.

Endpoints Configuration

Moving to the ‘Endpoint’ section, configure two endpoints:

  1. Endpoint 1: Set as Azure Endpoint with a unique name, designating ‘App Service’ as the Resource Type and specifying the first App Service. Assign a priority (e.g., 1 for the primary).
  2. Endpoint 2: Similarly, establish another Azure Endpoint, selecting ‘App Service’ for the Resource Type and indicating the second App Service while setting a subsequent priority (e.g., 2).

Setting the Protocol and Verifying Endpoints

Under the Traffic Manager settings tab, select ‘Configuration’. Set the Protocol to HTTPS with port 443, enabling the Traffic Manager to facilitate secure communications. Proceed to verify that the endpoints are now online and operational, allowing successful browsing of the application through the Traffic Manager URL.

Application Browsing using Traffic Manager URL and Validation

To further validate, momentarily stop the East US web app, then browse the application utilizing the Traffic Manager URL. This operation confirms the Traffic Manager profile’s functionality by successfully redirecting to the West Europe region app, evidencing the effective distribution of traffic.

Conclusion

The implementation of the Traffic Manager with prioritized routing has been executed with precision, as evidenced by the seamless redirection to the West Europe region app upon halting the East US web app. This not only confirms the Traffic Manager’s operational success but also highlights its capability to ensure high availability and efficient traffic distribution across global applications.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *